Materials science, the study of the properties of solid materials and how those properties are determined by a material’s composition and structure. It grew out of an amalgam of solid-state physics, metallurgy, and chemistry, since the rich variety of materials properties cannot be understood within the context of any single classical discipline. With a basic understanding of the origins of properties, materials can be selected or designed for an enormous variety of applications, ranging from structural steels to computer microchips. Materials science is therefore important to engineering activities such as electronics, aerospace, telecommunications, information processing, nuclear power, and energy conversion.
This article approaches the subject of materials science through five major fields of application: energy, ground transportation, aerospace, computers and communications, and medicine. The discussions focus on the fundamental requirements of each field of application and on the abilities of various materials to meet those requirements.
The many materials studied and applied in materials science are usually divided into four categories: metals, polymers, semiconductors, and ceramics. The sources, processing, and fabrication of these materials are explained at length in several articles: metallurgy; elastomer (natural and synthetic rubber); plastic; man-made fibre; and industrial glass and ceramics. Atomic and molecular structures are discussed in chemical elements and matter. The applications covered in this article are given broad coverage in energy conversion, transportation, electronics, and medicine.
Materials for Energy
An industrially advanced society uses energy and materials in large amounts. Transportation, heating and cooling, industrial processes, communications—in fact, all the physical characteristics of modern life—depend on the flow and transformation of energy and materials through the techno-economic system. These two flows are inseparably intertwined and form the lifeblood of industrial society. The relationship of materials science to energy usage is pervasive and complex. At every stage of energy production, distribution, conversion, and utilization, materials play an essential role, and often special materials properties are needed. Remarkable growth in the understanding of the properties and structures of materials enables new materials, as well as improvements of old ones, to be developed on a scientific basis, thereby contributing to greater efficiency and lower costs.
Classification of energy-related materials
Energy materials can be classified in a variety of ways. For example, they can be divided into materials that are passive or active. Those in the passive group do not take part in the actual energy-conversion process but act as containers, tools, or structures such as reactor vessels, pipelines, turbine blades, or oil drills. Active materials are those that take part directly in energy conversion—such as solar cells, batteries, catalysts, and superconducting magnets.
Another way of classifying energy materials is by their use in conventional, advanced, and possible future energy systems. In conventional energy systems such as fossil fuels, hydroelectric generation, and nuclear reactors, the materials problems are well understood and are usually associated with structural mechanical properties or long-standing chemical effects such as corrosion. Advanced energy systems are in the development stage and are in actual use in limited markets. These include oil from shale and tar sands, coal gasification and liquefaction, photovoltaics, geothermal energy, and wind power. Possible future energy systems are not yet commercially deployed to any significant extent and require much more research before they can be used. These include hydrogen fuel and fast-breeder reactors, biomass conversion, and superconducting magnets for storing electricity.
Classifying energy materials as passive or active or in relation to conventional, advanced, or future energy systems is useful because it provides a picture of the nature and degree of urgency of the associated materials requirements. But the most illuminating framework for understanding the relation of energy to materials is in the materials properties that are essential for various energy applications. Because of its breadth and variety, such a framework is best shown by examples. In oil refining, for example, reaction vessels must have certain mechanical and thermal properties, but catalysis is the critical process.
Applications of energy-related materials
High-temperature materials
In order to extract useful work from a fuel, it must first be burned so as to bring some fluid (usually steam) to high temperatures. Thermodynamics indicates that the higher the temperature, the greater the efficiency of the conversion of heat to work; therefore, the development of materials for combustion chambers, pistons, valves, rotors, and turbine blades that can function at ever-higher temperatures is of critical importance. The first steam engines had an efficiency of less than 1 percent, while modern steam turbines achieve efficiencies of 35 percent or more. Part of this improvement has come from improved design and metalworking accuracy, but a large portion is the result of using improved high-temperature materials. The early engines were made of cast iron and then ordinary steels. Later, high-temperature alloys containing nickel, molybdenum, chromium, and silicon were developed that did not melt or fail at temperatures above 540° C (1,000° F). But modern combustion processes are nearing the useful temperature limits that can be achieved with metals, and so new materials that can function at higher temperatures—particularly intermetallic compounds and ceramics—are being developed.
The structural features that limit the use of metals at high temperatures are both atomic and electronic. All materials contain dislocations. The simplest of these are the result of planes of atoms that do not extend all through the crystal, so that there is a line where the plane ends that has fewer atoms than normal. In metals, the outer electrons are free to move. This gives a delocalized cohesion so that, when a stress is applied, dislocations can move to relieve the stress. The result is that metals are ductile: not only can they be easily worked into desired shapes, but when stressed they will gradually yield plastically rather than breaking immediately. This is a desirable feature, but the higher the temperature, the greater the plastic flow under stress—and, if the temperature is too high, the material will become useless. In order to get around this, materials are being studied in which the motion of dislocations is inhibited. Ceramics such as silicon nitride or silicon carbide and intermetallics such as nickel aluminide hold promise because the electrons that hold them together are highly localized in the form of valence or ionic bonds. It is as if metals were held together by a slippery glue while in nonmetals the atoms were connected by rigid rods. Dislocations thus find it much harder to move in nonmetals; raising the temperature does not increase dislocation motion, and the stress needed to make them yield is much higher. Furthermore, their melting points are significantly higher than those of metals, and they are much more resistant to chemical attack. But these desirable features come at a price. The very structure that makes them attractive also makes them brittle; that is, they do not flow when subject to a high stress and are prone to failure by cracking. Modern research is aimed at overcoming this lack of ductility by modification of the material and how it is made. Hot pressing of ceramic powders, for example, minimizes the number of defects at which cracks can start, and the addition of small amounts of certain metals to intermetallics strengthens the cohesion among crystal grains at which fractures normally develop. Such advances, along with intelligent design, hold the promise of being able to build heat engines of much higher efficiency than those now available.
Diamond drills
Diamond drill bits are an excellent example of how an old material can be improved. Diamond is the hardest known substance and would make an excellent drill bit except that it is expensive and has weak planes in its crystal structure. Because natural diamonds are single crystals, the planes extend throughout the material, and they cleave easily. Such cleavage planes allow a diamond cutter to produce beautiful gems, but they are a disaster for drilling through rock. This limitation was overcome by Stratapax, a sintered diamond material developed by the General Electric Company of the United States. This consists of synthetic diamond powder that is formed into a thin plate and bonded to tungsten-carbide studs by sintering (fusing by heating the material below the melting point). Because the diamond plate is polycrystalline, cleavage cannot propagate through the material. The result is a very hard bit that does not fail by cleavage when it is used to drill through rock to get at oil and natural gas.